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ABSTRACT

The spatial evolution of cross
ow-vortex packets in a laminar boundary layer on a

swept wing are computed by the direct numerical simulation of the incompressible Navier-

Stokes equations. A wall-normal velocity distribution of steady suction and blowing at

the wing surface is used to generate a strip of equally spaced and periodic disturbances

along the span. Three simulations are conducted to study the e�ect of initial amplitude on

the disturbance evolution, to determine the role of traveling cross
ow modes in transition,

and to devise a correlation function to guide theories of transition prediction. In each

simulation, the vortex packets �rst enter a chordwise region of linear independent growth,

then, the individual packets coalesce downsteam and interact with adjacent packets, and,

�nally, the vortex packets nonlinearly interact to generate in
ectional velocity pro�les.

As the initial amplitude of the disturbance is increased, the length of the evolution to

breakdown decreases. For this pressure gradient, stationary modes dominate the distur-

bance evolution. A two-coe�cient function was devised to correlate the simulation results.

The coe�cients, combined with a single simulation result, provide su�cient information

to generate the evolution pattern for disturbances of any initial amplitude.
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I. INTRODUCTION

Because of �erce competition and rising operational costs, the aircraft industry must

utilize advanced technology in the design of the next generation of aircraft. One such

technology is the reduction of external viscous drag (and fuel expenditures) by natural

laminar 
ow control and by laminar 
ow control of the three-dimensional boundary-layer


ow on the wings of the aircraft. The fuel savings translates directly into reduced operating

costs in terms of millions of dollars over the life of a single aircraft.1 Improvements in wing

designs2;3 and the implementation of devices such as suction for laminar 
ow control4

and Gaster's bump5 successfully reduce aircraft drag. These technological advances are

successful because they are based on a fundamental understanding of three-dimensional

boundary-layer 
ow physics. In the continued interest of drag reduction, the present paper

documents both the e�ects of initial amplitudes on disturbance development and the role

of traveling cross
ow modes in transition. As the mechanisms of transition are better

understood, the transition process can be more easily predicted and controlled. To this

end, we have correlated the nonlinear instability information from the simulation results

for future transition prediction.

The laminar boundary layer may be disturbed by factors such as surface irregularities,

insect debris, and ice particles on the wing surface, combined with free-stream turbulence,

noise, or vibrations. These factors in
uence the amplitudes and spectra of introduced

instabilities.6 Furthermore, the contamination that arises from wing and fuselage junctures

can lead to transition close to the leading edge of the wing.5 For extremely long-spanned

aircraft, traveling waves may become unstable far from the fuselage and may cause tran-

sition on the outboard portion of the wings. Near the midchord regions of the wing,

traveling waves can become unstable, and potential interactions with cross
ow vortices

already present in the boundary layer can cause transition. The chordwise location of the

onset of this transition depends on the initial amplitudes of the disturbances.

Both stationary and traveling streamwise vortices (prior to transition) have been

experimentally observed by Arnal, Coustols, and Juillen;7 Poll;8 Bippes and Nitschke-
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Kowsky;9 M�uller and Bippes;10 Dagenhart et al.;11 and Dagenhart and Saric.12 These

instabilities are spawned from in
ections in the mean velocity pro�le. Cross
ow vortices

are prevalent in regions of favorable pressure gradients (i.e., near the leading edge); trav-

eling waves are suppressed in these regions. Identi�cation of the instabilities that are of

primary importance in the transition process at any chordwise location is a di�cult task

because both stationary and traveling modes are evolving in the 
ow.

Linear and secondary instability theories help determine dominant modes in the


ow;13;14;15 however, the lack of amplitude information and the inability to track mul-

tiple modes are de�ciencies of theory. Furthermore, linearized theories cannot account

for the potentially complex interactions in the disturbance �eld. Computational meth-

ods that solve the unsteady, nonparallel, nonlinear governing equations are the only tools

available to identify the roles and relative importance of the various modes in the complex

three-dimensional 
ow on the wing. Recently, Spalart,16 with direct numerical simulations

(DNS), and Malik and Li,17 with parabolized stability equation (PSE) theory, have per-

formed computational studies of cross
ow disturbance evolution in swept Hiemenz 
ow.18

Both the DNS and the PSE studies quantitatively agree and qualitatively capture the

evolution of the disturbance up to the weakly nonlinear stage. Furthermore, Joslin and

Streett19 used DNS to identify three distinct stages in the breakdown process. They found

that disturbances undergo stages of linear growth followed by vortex-vortex interactions

and nonlinear vortex rollover. In the later stage, in
ectional velocity pro�les were observed;

this observation is consistent with the experimental results of Dagenhart and Saric12 and

the computational results of Lin and Reed20 and Fuciarelli and Reed.21

Here, the spatial evolution of nonlinear cross
ow disturbances is computed by a sim-

ulation of the full Navier-Stokes equations (DNS). Choudhari and Streett6 and Crouch22

have shown with receptivity theory that free-stream noise, coupled with roughness ele-

ments on the wing surface, generates dominant stationary disturbances with amplitudes

much larger than traveling modes. However, linear stability theory suggests that traveling

modes should have larger growth rates; hence, these traveling modes should dominate.
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Here, both stationary and traveling modes are introduced; the interaction and the mutual

growth are computed. The initial disturbance amplitudes are varied, and the results are

compared. Finally, the nonlinear simulation results are correlated to potentially guide later

theories of transition prediction.

II. PROBLEM FORMULATION

To solve the problem numerically, the instantaneous velocities ~u = (~u; ~v; ~w) and the

pressure ~p are decomposed into base and disturbance components. The base 
ow is given

by velocities U = (U; V;W ) and the pressure P ; the disturbance is given by velocities

u = (u; v;w) and the pressure p. The velocities correspond to the coordinate system

x = (x; y; z), where x is the chordwise direction, y is the wall-normal direction, and z is

the spanwise direction. A sketch of the swept-wing problem is shown in �gure 1. Note

that the wing sweep direction corresponds to the positive z-direction and the direction

of positive spanwise velocity. The computational domain is identi�ed by region 2 of the

�gure. (Region 1 of the �gure corresponds to the computational domain for the study of

the attachment-line region.)

The base 
ow for the swept wedge is described by the Falkner-Skan-Cooke (FSC)

similarity pro�les.23;24 To generate the velocity �eld, an analytical pressure gradient is

imposed. This pressure matches the experimental results of M�uller and Bippes10 for their

swept-wedge model.

For the disturbance portion of equation (1), the three-dimensional, incompressible

Navier-Stokes equations are solved in disturbance form. These equations are given by

@u

@t
+ (u � r)u+ (U � r)u+ (u � r)U = ��p+

1

R
r2u (1)

with the continuity equation

r � u = 0 (2)

and boundary conditions

u = 0 at y = 0 and u! 0 as y !1 (3)
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The Reynolds number R = QR�=� is based on the boundary-layer thickness in the xy-

plane de�ned as � =
p
�xc=Uo (where xc is the chordwise coordinate normalized by the

chord length) and local edge velocity QR = Qo at the computational in
ow.

III. NUMERICAL METHODS

In this section, the numerical techniques required for the simulation and the distur-

bance forcing are brie
y discussed. For a detailed description of the spatial DNS approach

used for this study, refer to Joslin et al.25;26

The spatial discretization entails a Chebyshev-collocation grid in the wall-normal di-

rection, fourth-order �nite di�erences for the pressure equation, sixth-order compact dif-

ferences for the momentum equations in the streamwise direction, and a Fourier series in

the spanwise direction on a staggered grid.26 For time marching, a time-splitting proce-

dure is used with implicit Crank-Nicolson di�erencing for normal di�usion terms and an

explicit three-stage Runge-Kutta method.27 The in
uence-matrix technique is employed

to solve the resulting pressure equation (Helmholtz-Neumann problem).28;29 Disturbances

are introduced into the boundary layer by suction and blowing techniques. At the in
ow

boundary, the mean base 
ow is forced, and at the out
ow, the bu�er-domain technique

of Streett and Macaraeg30 is used.

In this study, the vortex packets are forcibly imposed into the boundary layer by steady

suction and blowing through the wedge surface in the same manner as described by Joslin

and Streett.19 Suction and blowing techniques may be used because, as demonstrated by

Kachanov and Tararykin,31 the results from suction and blowing and roughness-element

disturbance generators correlate well and lead to disturbances that graphically coincide.

IV. RESULTS

For the simulations, no surface imperfections, particulates, weather-condition e�ects,

noise, or spanwise inhomogeneities exist. Surface curvature is neglected to simplify the

numerics and because the simulation is conducted on a chordwise region of the wing that

corresponds to a relatively 
at portion of a laminar 
ow airfoil.11 The base 
ow and most
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of the parameters used in the initial study by Joslin and Streett19 are used here to enhance

understanding of the transition process on swept wings.

The �rst simulation (SIM-I) is the case of Joslin and Streett.19 This simulation has a

grid of 901 streamwise, 61 wall-normal, and 32 spanwise grid points. The far-�eld boundary

is located at 50� from the wedge, the streamwise distance is 857� from the in
ow, and the

spanwise distance is 108�. For the time marching, a time-step size of dt = 0:2 is chosen

for the three-stage Runge-Kutta method. For all simulations, cross
ow-vortex packets are

generated through a periodic strip of steady suction and blowing holes, equally spaced

on the wing surface, and the shape of the wall-normal velocity pro�les at the wall have a

half-period sign wave in the chordwise direction and a full-period sine wave in the spanwise

direction. Stationary cross
ow-vortex packets are generated by steady suction and blowing

with a wall-normal velocity component at the wall with an amplitude of A = 1 � 10�5.

The holes for SIM-I have a chordwise length of 8:572� and a spanwise length of 16:875�.

The second simulation (SIM-II) has a grid of 501 streamwise, 61 wall-normal, and

64 spanwise grid points. The far-�eld boundary is located at 50� from the wedge, the

streamwise distance is 476�, and the spanwise distance is 108�. A time-step size of dt = 0:4

is chosen for time marching. Suction and blowing with the wall-normal velocity amplitude

of A = 1 � 10�4 is used to generate the stationary and traveling cross
ow vortices. The

frequencies of twenty forced traveling modes range from ! = 0:6 to ! = 1:2. The holes for

SIM-II have a chordwise length of 8:572� and a spanwise length of 35:427�.

The �nal simulation (SIM-III) has a grid of 421 streamwise, 61 wall-normal, and

64 spanwise grid points. The far-�eld boundary is located at 50� from the wedge, the

streamwise distance is 400�, and the spanwise distance is 108�. A time-step size of dt = 0:4

is chosen for time marching. The stationary and traveling cross
ow-vortex packets are

generated with both steady and unsteady suction and blowing with a wall-normal velocity

component at the wall with an amplitudeA = 1�10�3. The frequencies of twenty traveling

modes range from ! = 0:6 to ! = 1:2. The holes for SIM-III have chordwise lengths of

8:572� and spanwise lengths of 35:427�.
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As described in some detail by Joslin and Streett,19 three distinct stages of distur-

bance evolution are expected. First, the growth of individual disturbance packets should

be isolated from adjacent packets. Depending on the distance between the suction holes

and the directions of the disturbance evolution, the individual packets should coalesce at

some chordwise location downstream. If the vortex packets reach su�ciently large am-

plitudes in later stages of transition, then the disturbance �eld should be dominated by

nonlinear interactions and vortex roll over. Each of the three simulations captures the dif-

ferent stages of this breakdown sequence. For example, �gure 2 shows the contours of the

logarithm of the disturbance vorticity for SIM-II as viewed from above the swept wedge.

The di�erent shades indicate the various levels of vorticity; two computational domains are

shown side by side to describe the path of the disturbances generated from adjacent suction

and blowing holes. Near the suction and blowing holes, the disturbance grows and spreads

in the three-dimensional 
ow �eld in both the spanwise and the chordwise direction. A

disturbance exits through the spanwise boundary (bottom of �gure 2). Numerically, the

disturbance reappears through the other spanwise boundary (top of �gure 2) because pe-

riodicity is assumed; however, physically, the disturbance generated from an adjacent hole

enters the domain, and its evolution is computed. At some chordwise location, vortex-

vortex interactions begin to occur between adjacent vortices, and the amplitudes of the

disturbances increase as denoted by the lighter contours. Figures 3{5 show spanwise slices

(planes) of chordwise velocity contours viewed from the trailing edge toward the leading

edge. (The wing tip is to the left, and the wing root is to the right.) For each simulation,

the contour results show that immediately downstream of the disturbance initialization

point a distinct vortex packet evolves that is isolated from nearby disturbances. As the

disturbance evolves and spreads, vortices �ll the span as a result of the vortex-vortex in-

teractions or a spanwise instability mode. These vortex interactions lead to rapid increases

in the disturbance growth rates, which in turn lead to disturbances that grow and interact

nonlinearly. In this later, nonlinear stage of breakdown, the contours (�gures 3{5) indicate

that low-speed 
uid is dragged out and over the high-speed 
uid, which is drawn toward
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the surface. Dagenhart and Saric12 observed this same phenomenon in their experimental

results, and Joslin and Streett19 observed this phenomenon in their computations. So this

breakdown sequence occurs regardless of the initial amplitudes of the disturbances; the

initial amplitude apparently e�ects only the chordwise locations at which the stages begin.

In the nonlinear interaction region, in
ectional velocity pro�les are observed in all

simulations. Figure 6 shows the instantaneous chordwise velocity pro�les (U + u) for each

simulation at a chordwise station that corresponds to the nonlinear vortex rollover stage;

the various pro�les at each station correspond to adjacent spanwise locations. This vortex

rollover stage cannot be described in detail by a linear method because of the inherent

nonlinearity in the instabilities. Across the span, the 
ow is accelerated in regions near the

wedge surface and is retarded in other areas out in the boundary layer. The characteristic

in
ectional pro�les have been observed in experiments by both M�uller and Bippes10 and

Dagenhart et al.,11 and in computations by Lin and Reed,20 Fuciarelli and Reed,21 and

Joslin and Streett.19 Dagenhart et al.11 noted that the appearance of in
ectional pro�les

was rapidly followed by the appearance of a high-frequency instability and, subsequently,

by transition. (No measurements were made in the experiments downstream of this stage.)

The theoretical studies of Kohama et al.,32 Reed and Fuciarelli,33 and Balachandar et al.15

it is clearly shown that this high-frequency instability in the experiments is reminiscent

of secondary instabilities, which spawn from these in
ectional velocity pro�les. If a linear

theory is to be used to predict transition, then it can only be used prior to this in
ectional

pro�le region. Furthermore, if laminar 
ow control is to be used to delay transition onset,

then it must also be used prior to this rapid breakdown region.

The energy of the disturbances over the spanwise and wall-normal plane in the com-

putational domain is shown with downstream location in �gure 7. As outlined above and

clearly shown in the �gure, each simulation contains disturbances initiated with di�erent

amplitudes of suction and blowing and, subsequently, di�erent energy levels. As the initial

amplitudes of the disturbances become larger, the region of linear theory validity decreases,

and the nonlinear vortex-interaction region encompasses the majority of the breakdown
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region. If linear theories are to be used, then correlations are required in the nonlinear re-

gion. Here, the simulation data are correlated to enhance linear theory or future transition

prediction theories.

Initially, a disturbance packet grows independently of other adjacent packets; ex-

ponential growth similar to that of primary instability modes is observed in this region.

Downstream near the spanwise spreading region, an interruption in the exponential growth

occurs, followed by a rapid increase in the disturbance growth rates. Joslin and Streett19

showed that the computed disturbance followed the group-velocity path of linear stability

theory until the vortex-interaction stage was reached. As a result, a linear theory alone

is useless after this region of vortex-vortex interaction occurs because of the uncertain-

ties in the propagation direction. However, this limitation of linear theory is true for any


ow; once nonlinearities enter the 
ow, the linear theory is inadequate. However, the eN

method, which is based on linear stability theory, is a semiempirical approach that has

been shown by Bushnell et al.34 to predict transition for a broad class of 
ows. Normally,

the eN method results are presented in terms of logarithms of disturbance velocity, nor-

malized by the initial amplitude. Simulation results in this form are shown in �gure 8. The

larger amplitude cases, which break down in much shorter chordwise distances, indicate

N values of only 3 to 4; the small-amplitude case shows the expected N ' 9 value. (Note

that the N corresponds to the exponential value in the eN method and is equal to the

ordinate of �gure 8.) Correlation of the results with this normalizing de�nition indicates

that as the initial amplitude of the disturbance increases the N value decreases signi�-

cantly. This comparison is not useful in the theory because the transition point for each

simulation case is depicted by di�erent N values. Arguably, this prediction method should

use normalizing amplitudes that correspond to branch I of the neutral curve; however, this

information is unavailable in the simulations. If the smallest amplitude of SIM-I was used

for all normalizing purposes, then �gure 7 would result with a di�erent ordinate scale. An

alternate approach to predict transition involves the collapse of the simulation results onto

one similarity-type curve with a correlation function.
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This approach is not a new idea. Many years of research with these correlations have

led to a better understanding of the turbulent boundary layer. (See Townsend.35) However,

the correlation of both linear and nonlinear instabilities in a transitional boundary layer

is a new approach. For the following database of cross
ow breakdown results, correlations

of the linear growth region of the instabilities (shown in �gure 7) is examined. After many

numerical experiments, the correlation results shown in �gure 9 were obtained with the

following two-coe�cient function:

xcor = xr + (xc � xr) � ec1 (4a)

Ecor = E=Er � 10(xc�xr)=xr)c2 (4b)

where the subscript r denotes reference conditions and c1 and c2 are the correlation coe�-

cients, both of which are discussed in more detail later in the text. As seen in �gure 9, the

linear growth regions of the individual simulations correlate well with this functional rep-

resentation. The curves begin to deviate slightly at the region of vortex-vortex interactions

and throughout the nonlinear region. This deviation in the nonlinear region is not unex-

pected because obvious di�erences exist in this region (shown in �gure 7). Because these

simulations are essentially noise free, the necessary frequency spectra required to achieve

transition are absent from the computations. Without these unsteady components, the sta-

tionary cross
ow components can grow without bound and without triggering transition.

As a result, the peak amplitudes of the cross
ow results are only important to indicate

that both the disturbance levels and the physics are comparable to those observed in the

experiments. The peak amplitude levels can signal when the important vortex-rollover

phenomenon is dominant and, in the absence of transition in the computations, can serve

as the arti�cial point of transition for discussion.

The coe�cients of equation (4), which are used to generate �gure 9, are deter-

mined such that the linear growth region correlates. The resulting coe�cients are

c1 = f0; 0:38; 0:58g and c2 = f0; 4:5; 8:0g, which correspond to the simulations fSIM-I,

SIM-II, SIM-IIIg. Figure 10 shows the interpolated coe�cients with initial disturbance

10



amplitudes. The coe�cient c1 indicates a nearly linear variation with initial disturbance

amplitude; c2 is nearly linear for small amplitudes, but increases more rapidly than the

initial disturbance amplitude for large amplitudes. If the coe�cients and amplitudes in

�gure 10 are used with one reference simulation (SIM-I), then the evolution pattern of a

disturbance with any initial amplitude is known from the correlation function in equation

(4). To demonstrate, �gure 11 shows the evolution of many disturbances with chordwise

position. A comparison of the correlated results with the SIM-II and SIM-III results reveals

good quantitative agreement in the linear growth region and indicates expected di�erences

in the nonlinear region; however, the essential qualitative features in the nonlinear region

are captured by the correlation function. The second comparison in �gure 11 shows the

e�ect of initial amplitude on both the extent of linear growth and the location of peak

amplitude (transition). The correlated data demonstrates how the transition point moves

upstream as the initial amplitude increases.

This discussion of correlation functions leaves many questions unanswered (e.g., how

the coe�cients vary with Reynolds number and angle of attack); however, it does provide

an initial starting point for the derivation of better and more complete relations. Further-

more, many di�erent instabilities and variations in computational parameters (e.g., grids)

were introduced in these simulations. Figures 2{6 indicate that in spite of this variation

the dominate physics of the 
ow have been captured in all of the simulations. However,

additional simulations are necessary to adequately �ne-tune the correlation tool and to

determine the universality of the coe�cients.

The role of stationary and traveling modes will be addressed in the remainder of this

section. As mentioned at the beginning of this section, both stationary and traveling modes

were excited in SIM-II and SIM-III; however, no di�erentiation between the di�erent modes

has explicitly been made in this paper. Furthermore, the correlation functions were derived

without reference to the unsteady components present in the 
ow. In the remainder of this

paper, we show that the above comparisons remain valid because the stationary (steady)

mode is dominant in comparison with the unsteady modes.
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To determine the individually dominant modes, the spectra are obtained from each

simulation by a Fourier series analyzer. Because periodicity is assumed in the spanwise

direction, Fourier series are appropriate; however, a window of temporal data must be

assumed (similar to experimental techniques) to use Fourier series in time. The frequency

and spanwise wavenumber spectra can be examined to determine the dominant modes

which are evident by the large energy contents. Figure 12 shows the most dominant

modes with the frequency and spanwise wave-number spectra in the nonlinear vortex

rollover region of breakdown. Here, the dominant mode has a frequency of zero in all

simulations and the energy levels rapidly decay (drop o�) in the unsteady modes. In

the experiments, secondary instability modes were observed in this region; however, the

simulation results indicate that no high-frequency modes occur. The absence of high-

frequency modes suggests that the in
ectional pro�les arise from the stationary cross
ow

modes alone and that the simulations are virtually free from the noise sources that generate

the important unsteady modes. Although unsteady modes were forced in both SIM-II

and SIM-III, the proper modes that lead to high-frequency modes were not found in the

simulations. Figure 13 shows pro�les of the stationary cross
ow modes with spanwise wave

numbers, and �gure 14 shows pro�les of the dominant stationary cross
ow modes as they

evolve along the wing chord. Figure 13 indicates that in this later stage of breakdown,

signi�cant energy can be found in the harmonics, but the 
ow is resolved with the grids that

are used in the simulations. The mean-
ow distortion component has su�cient energy to

alter the mean 
ow (see �gure 6), which further indicates nonlinear activity in this region.

In �gure 14, the pro�les early in the simulation take on shapes that can be described by

linear theory. (See Fuciarelli and Reed.21) As the disturbance amplitudes increase with

downstream distance, nonlinear interactions lead to pro�les that have two peaks (shown

clearly in the SIM-I results). This double-peak feature in the nonlinear regime agrees with

the experiments of Dagenhart and Saric11 and further indicates the inadequacy of linear

theory for this stage of breakdown.
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V. CONCLUDING REMARKS

The spatial evolution of cross
ow-vortex packets in a laminar boundary layer on a

swept wing were computed by direct numerical simulation of the incompressible Navier-

Stokes equations. Three distinct and subsequent stages of disturbance evolution were

observed in all simulations; these results agree with the previous study by Joslin and

Streett.19 A disturbance that is ingested into the 
ow will eventually interact nonlinearly

and lead to in
ectional pro�les; these in
ectional pro�les are observed experimentally just

prior to the laminar-to-turbulent transition location. The characteristic in
ectional pro�les

have been observed in experiments by both M�uller and Bippes10 and Dagenhart et al.,11

and in computations by Lin and Reed,20 Fuciarelli and Reed,21 and Joslin and Streett.19

Dagenhart et al.11 noted that the stationary cross
ow disturbance dominates the in-

stabilities present in the 
ow until the in
ectional pro�les develop; this development of

in
ectional pro�les results in an explosive growth of secondary instability modes, which in

turn leads to transition. M�uller and Bippes15 argue that traveling modes are more impor-

tant in the transition process; however, they suggest that the in
ectional pro�les, deformed

by stationary vortices, lead to the growth of secondary instabilities. The present compu-

tational study of stationary and traveling cross
ow disturbances indicates that stationary

modes are dominant in the boundary layer at this angle of attack, Reynolds number, and

base 
ow and that the growth of stationary modes causes instantaneous in
ections in the

velocity �eld. Although unsteady modes were forced, no secondary instability modes were

excited in the vortex rollover region.

A two-coe�cient correlation function was introduced to combine the evolution pat-

tern of disturbances generated with di�erent initial amplitudes. These preliminary results

indicate that the correlations can be made and can potentially provide a database to test

theories of transition prediction at low computational cost.
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Figure 1. Sketch of swept-wing (1) attachment-line region and (2) laminar-to-turbulent

transition region.
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Figure 2. Top view of disturbance vorticity (log 
) contours for simulation SIM-II for

swept-wedge 
ow.
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(a) xc = 0:25

(b) xc = 0:34

(c) xc = 0:45

Figure 3. Spanwise planes of disturbance velocity (u) contours at chordwise locations for

swept-wedge 
ow of SIM-I.
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(a) xc = 0:25

(b) xc = 0:325

(c) xc = 0:375

Figure 4. Spanwise planes of disturbance velocity (u) contours at chordwise locations for

swept-wedge 
ow of SIM-II.
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(a) xc = 0:25

(b) xc = 0:30

(c) xc = 0:34

Figure 5. Spanwise planes of disturbance velocity (u) contours at chordwise locations for

swept-wedge 
ow of SIM-III.
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Figure 6. Chordwise (base + disturbance) velocity pro�les at various chordwise and span-

wise locations for swept-wedge 
ow.
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Figure 7. Energy of disturbance velocity with chordwise location for swept-wedge 
ow.
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Figure 8. Estimation of N factor for swept-wedge 
ow.
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Figure 9. Correlated simulation results for cross
ow instabilities in swept-wedge 
ow.
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Figure 10. Correlation coe�cients with forcing amplitude for cross
ow instabilities in

swept-wedge 
ow.
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Figure 11. Correlated and simulation results for cross
ow instabilities in swept-wedge 
ow.
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Figure 12. Chordwise velocity decomposed into spanwise wave-number components with

frequency at various chordwise locations for swept-wedge 
ow.
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Figure 13. Pro�les of cross
ow disturbance mode and spanwise harmonics.
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Figure 14. Pro�les of cross
ow disturbance mode with chordwise distance.
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